
J. Fluid Mech. (2008), vol. 594, pp. 29–57. c© 2008 Cambridge University Press

doi:10.1017/10.1017/S0022112007008737 Printed in the United Kingdom

29

Non-normality and nonlinearity
in combustion–acoustic interaction in

diffusion flames

KOUSHIK BALASUBRAMANIAN AND R. I. SUJ ITH†
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India

(Received 14 March 2007 and in revised form 29 July 2007)

The role of non-normality and nonlinearity in flame–acoustic interaction in a ducted
diffusion flame is investigated in this paper. The infinite rate chemistry model is
employed to study unsteady diffusion flames in a Burke–Schumann type geometry.
It has been observed that even in this simplified case, the combustion response to
perturbations of velocity is non-normal and nonlinear. This flame model is then
coupled with a linear model of the duct acoustic field to study the temporal evolution
of acoustic perturbations. The one-dimensional acoustic field is simulated in the
time domain using the Galerkin technique, treating the fluctuating heat release from
the combustion zone as a compact acoustic source. It is shown that the coupled
combustion–acoustic system is non-normal and nonlinear. Further, calculations
showed the occurrence of triggering; i.e. the thermoacoustic oscillations decay for
some initial conditions whereas they grow for some other initial conditions. It is
shown that triggering occurs because of the combined effect of non-normality and
nonlinearity. For such a non-normal system, resonance or ‘pseudoresonance’ may
occur at frequencies far from its natural frequencies. Non-normal systems can be
studied using pseudospectra, as eigenvalues alone are not sufficient to predict the
behaviour of the system. Further, both necessary and sufficient conditions for the
stability of a thermoacoustic system are presented in this paper.

1. Introduction
The occurrence of combustion instabilities has been a plaguing problem in the

development of combustors for rockets, jet engines and power-generating gas turbines
(McManus, Poinsot & Candel 1993). Predicting and controlling combustion instability
requires an understanding of the interactions between the combustion process and
the acoustic waves. Combustion–acoustic interaction involves a feedback mechanism
where the fluctuating heat release acts as a source of energy for the acoustic field and
the latter in turn affects the combustion process and hence the heat release rate. A
comprehensive prediction of the conditions for the onset of instabilities is a difficult
task, which is not yet mastered. In particular, predicting the conditions under which
finite-amplitude disturbances destabilize a linearly stable system and predicting the
limit-cycle amplitude of the instability remain a key challenge, as little is known, even
in a qualitative sense, about the key parameters controlling nonlinear flame dynamics,
even in simple laminar flames (Zinn & Lieuwen 2005).
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Combustion instability has been observed in both premixed and non-premixed
combustors. A large number of investigations have been performed on combustion
instability in premixed systems (see Lieuwen 2003 for a comprehensive review). As
compared to premixed flames, not much work has been done on the combustion
instability of non-premixed flames. However, most gas turbine combustors for aircraft
and other industrial applications involve non-premixed combustion; therefore, it is
important to investigate combustion instability in such systems.

There have been some studies regarding the unsteady nature of non-premixed
flames. Hertzberg (1997) experimentally studied the effects of acoustic forcing on the
flame shape and observed that at specific excitation frequencies and amplitudes, the
driven flame splits into a central jet and side jets. Cuenot, Egoltopoulas & Poinsot
(2000) investigated the effects of unsteadiness on counterflow diffusion flames using
laminar flamelet models. They proposed an extinction diagram for the prediction of
extinction conditions of unsteady counterflow flames, and it was found that there
is a good agreement between the predicted and computed extinction points. Chaos
et al. (2005) experimentally studied the effect of fuel Lewis number in unsteady
Burke–Schumann hydrogen flames. Buckmaster, Jackson & Yao (1999), Jackson &
Buckmaster (2000) and Buckmaster (2002) analysed the effect of unsteadiness on
non-premixed flames in the context of propellant flame geometry and edge flames.
These papers discuss the role of the Péclet number on the structure of the diffusion
flame.

Vance, Miklavcic & Wichman (2001) studied the stability of a one-dimensional
diffusion flame by analysing the effect of perturbations on the Burke–Schumann flame
using linear stability analysis. Oscillatory and cellular flame instabilities were identified
from the numerically calculated eigenvalues of the linearized system of equations.
The role of convection in flame instabilities was also discussed. They also calculated
(numerically) the critical values of various parameters affecting flame instability.
Tyagi, Chakravarthy & Sujith (2007) investigated the unsteady combustion response
of a ducted non-premixed flame and coupling with the duct acoustic field using
numerical simulations. They considered a two-dimensional co-flowing non-premixed
flame in a uniform flow field, as in the Burke–Schumann geometry. Both finite-
rate and infinite-rate chemistry effects were examined. The one-dimensional acoustic
field was simulated in the time domain using the Galerkin method, treating the
fluctuating heat release from the combustion zone as a compact acoustic source. The
combustion oscillations are shown to cause exchange of acoustic energy between
the different natural modes of the duct over several cycles of acoustic oscillations.
The authors emphasize the nonlinear nature of the interaction. However, the role of
non-normality is not discussed.

The most complete solution to the problem can be obtained by solving the full
compressible-flow equations. However, in many situations such as that encountered in
the present paper, the combustion flow field is essentially incompressible (low Mach
number) and solving compressible-flow equations to take account of the chamber
acoustic field is computationally expensive and difficult. Alternatively, the combustion
flow field can be solved using the incompressible-flow equations containing certain
terms from the acoustic field, and the duct acoustic field can in turn be solved for,
using linearized compressible-flow equations containing the source terms from the
combustion flow field. This strategy was applied by Wu et al. (2003) for studying
nonlinear premixed flame acoustic interaction. This approach was adopted by Tyagi
et al. (2007) to study nonlinear effects in non-premixed flame acoustic interactions.
The present paper adopts the same approach.



Non-normality and nonlinearity in combustion–acoustic interaction 31

(b)

d1(0)e1

d1(0)e1

d1(t)e1

d1(t)e1

d2(t)e2

d2(t)e2

d2(0)e2

d2(0)e2

Φ(0)

Φ(0)

Φ(t)

Φ(t)

(a)

Figure 1. (a) Monotone decay of a normal system, (b) transient growth of a non-normal
system. The initial state is Φ(0) = d1(0)e1 + d2(0)e2, and the final state Φ(t) = d1(t)e1 + d2(t)e2.
The dashed lines denote the vectors at time t = 0 and the solid lines denote the vector at some
time t.

The objective of this paper is to investigate the mechanism that leads to the complex
interaction between the different eigenmodes of the coupled thermoacoustic system.
We emphasize the role of non-normality in combustion–acoustic interaction. For
such non-normal systems, linear stability analysis based on the analysis of individual
eigenvalues is not sufficient to predict the behaviour of the system. Combustion–
acoustic interaction is non-normal even when finite-rate chemistry effects are neglected.

Since there has been little work on combustion instability of non-premixed flames,
the present approach is to retain only the most basic aspects of such a flame, to
gain clear understanding. The configuration chosen is identical to that in Tyagi et al.
(2007), i.e. a two-dimensional co-flow non-premixed flame in the Burke–Schumann
geometry. Combustion is modelled using an infinite-rate chemistry model, where the
flame is assumed to be a thin sheet. The roles of non-normality and nonlinearity are
clarified in combustion–acoustic interactions in the context of such a diffusion flame.
This paper is a continuation of the work by Tyagi et al. (2007). However, they did not
analyse the role of non-normality in thermoacoustic interactions. In this paper, the
effects of non-normality and nonlinearity are separated analytically, shedding light
on the role played by non-normality which has not been discussed previously.

2. Non-normality and transient growth of thermoacoustic oscillations
An operator is said to be non-normal if it does not commute with its adjoint

(Schmid & Henningson 2001). Such an operator has non-orthogonal eigenvectors
and this property leads to transient growth of oscillations before they eventually
decay. This property is illustrated in figure 1, where e1 and e2 represent the direction
of the eigenvectors and Φ is a vector in the functional space, which is expressed
as a linear combination of the eigenvectors. Figure 1(a) shows that, for a normal
system, Φ decreases monotonically if the amplitudes of the individual eigenvectors
themselves decay. On the contrary, for the non-normal system shown in figure 1(b),
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Figure 2. The evolution of non-dimensional acoustic energy (1/2p′2/(γM)2 + 1/2u′2)
obtained from - - - , linear and ——, nonlinear simulations. η1(0) = 0.5, η̇1(0) = 0.5, xf = 3/4,
α = 0.25, La/2H = 12.5, Xi = 3.2, Yi = 3.2/7 and Pe = 5.0.

Φ increases even when the amplitudes of individual eigenvectors decay. However, Φ

decays after a sufficiently long time if nonlinear effects do not become significant
during the transient growth. There could be situations where the short-term growth
of fluctuations can lead to significant amplitudes, where nonlinear effects could cause
‘nonlinear driving’ (figure 2). Such a scenario arises in the evolution of thermoacoustic
oscillations.

The acoustic equations (the assumptions in deriving these equations and the details
of non-dimensionalization are given in § 4) in the presence of a heat source can be
written as:

γM
∂u′

∂t
+

∂p′

∂x
= 0, (1)

∂p′

∂t
+ γM

∂u′

∂x
= (γ − 1)γ

La

c0

Q̇′

ρ0c
2
0

. (2)

In (2), the heat release rate is obtained from a combustion model. In this paper,
the thin-flame-sheet model for combustion is used to calculate the heat release rate.
The acoustic field is assumed to be one-dimensional, though the combustion model is
two-dimensional. The combustion zone is much smaller compared to the duct length
and hence the source of heat release rate in (2) can be treated as a compact source.
The model considered here is similar to that of Tyagi et al. (2007). The details of this
model are discussed in § 4. The oscillatory heat release rate depends on the velocity
and pressure perturbation. Hence, the oscillatory heat release rate, when linearized
can be written as Q̇′ = R(x, εi)γMu′ + S(x, µi)p

′, where R and S can be treated as a
continuous function of x (which could even be sharply peaked at the flame location
as in the case of a compact flame), εi and µi are parameters which affect the heat
release rate. The heat release rate could have an explicit dependence on time as well.
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Equations (1) and (2) can be recast in matrix form as:

⎡
⎢⎢⎣

∂

∂t

∂

∂x

∂

∂x
− RLaγ (γ − 1)

ρ0c
3
0

∂

∂t
− SLaγ (γ − 1)

ρ0c
3
0

⎤
⎥⎥⎦

[
γMu′

p′

]
= 0. (3)

The matrix in (3) is a matrix of operators. The above operator does not commute with
its adjoint for non-zero R and S. (The adjoint of a real matrix is simply the transpose
of the matrix. The adjoint of a differential operator is its negative.) Therefore, it
is clear that the thermoacoustic interaction is non-normal. In the absence of heat
release, the matrix is symmetric and hence normal.

The heat release rate for a diffusion flame is calculated using the Burke–Schumann
model in this paper. The heat release rate is obtained by solving for the Schvab–
Zeldovich variable, which is governed by an advection–diffusion equation. It has been
shown that the advection–diffusion operator is non-normal (Reddy & Trefethen 1994;
Trefethen 1997).

As a result of the non-normal behaviour, the solutions exhibit large transient growth
which could potentially trigger nonlinearities in the system when the amplitudes
reach high enough values. Under such circumstances, classical linear stability analysis
becomes a poor indicator of system stability (Trefethen et al. 1993). This phenomenon
has been studied in detail in the context of turbulence by Baggett, Driscoll & Trefethen
(1995). They explain that in the non-normal evolution, the input and output structures
(such as streamwise vortices, streaks, etc.) are different and nonlinearity closes the
feedback loop by converting some of the output into input. In a similar manner, the
interplay between transient linear growth resulting from non-normality and ‘nonlinear
mixing’ can lead to the growth of the acoustic oscillations over a large number of
cycles. The consequences of non-normality of modes have been studied in the context
of instability of magnetic plasmas by Kerner (1989), the formation of cyclones by
Farrell (1989) and transition to turbulence by Trefethen et al. (1993), Gebgart &
Grossman (1994) and Baggett et al. (1995).

In order to analyse (3), the operator must be reduced to a finite-dimensional
operator such as a finite-dimensional matrix. In this paper, the partial differential
equations governing the combustion acoustic interaction are reduced to a set of
ordinary differential equations using the Galerkin technique. This is achieved by
decomposing the spatial variation using basis functions. This is similar to decomposing
a vector along some basis. The basis functions used in this study are not the
eigenmodes of the linearized system. Such an approach has been used in solving partial
differential equations (see e.g. Henningson & Schmid 1992). The ODE obtained using
this technique are in time domain. These evolution equations are solved numerically
using the fourth-order Runge–Kutta scheme. This system of nonlinear ODEs is
similar to the numerous dynamical systems in literature. Such systems show dynamical
behaviour such as fractals and folds. The complete evolution equations are linearized
and the linearized equations are found to be non-normal. It must be emphasized
that the eigenvalues of the linearized equations are not the wavenumbers of the basis
functions used in the Galerkin technique.
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Figure 3. The burner configuration and the domain for acoustics and combustion. The flame
is located at xf . The origin and coordinate system of the combustion domain is denoted by
subscript ‘c’ and that of the acoustic field is denoted by subscript ‘a’.

3. The combustion model
The infinite-rate chemistry flame model is employed to study the unsteady two-

dimensional co-flow non-premixed combustion. Figure 3 shows the geometry of the
burner; the middle slot carries fuel and the outer slots carry oxidizer. This is identical
to the geometry used by Tyagi et al. (2007). This model is similar to that considered by
Buckmaster (2002) and is referred to as the thermodiffusive model by Kurdyumov &
Matalon (2004); it is often adopted to investigate physical aspects specific to non-
premixed combustion. The following assumptions have been made in deriving the
model equations.

(i) The combustion length scale is negligible compared to the acoustic length scales
and hence the spatial gradient in the velocity in the combustion zone is neglected.

(ii) The velocity field within the combustion zone is treated as a one-dimensional
uniform field. The variation in density is neglected and an average value of density is
assumed throughout.

(iii) The fuel and the oxidizer react as soon as they come in contact, as the reaction
rate is much faster (infinite) when compared to the diffusion or convection rates.
Hence, the flame at any instant will be located at the stoichiometric surface, where
the Schvab–Zeldovich variable vanishes.

(iv) Lewis number is assumed to be 1.
This model is an extension of the classical Burke–Schumann model where, the
unsteady effects are not considered.

The unsteady governing equation for Schvab–Zeldovich variable in the non-
dimensional form is given by:

∂Z

∂t
+ u(t)

∂Z

∂x
=

1

Pe

(
∂2Z

∂x2
+

∂2Z

∂y2

)
, (4)

where u(t) is the net velocity in the combustion zone, Pe is the Péclet number
(u0H/D, where D is the diffusivity of X and Y ). A detailed derivation of this equation
is given in Tyagi et al. (2007). The velocity used in (4) is the net velocity (sum of
the base flow velocity and the fluctuating component of velocity), i.e. u(t) = 1 + u′(t).
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Schvab–Zeldovich variable is the difference in the non-dimensional oxidizer and fuel
mass fractions (Z = X − Y ). X is the oxidizer concentration non-dimensionalized by
νxWx and Y is the fuel concentration non-dimensionalized by νyWy , where Wx and Wy

are the molecular masses of species X and Y , νx and νy are the stoichiometric
coefficients of species X and species Y in the single-step reaction νxX + νyY →
Products. Following Tyagi et al. (2007), the variables in the above equation are non-
dimensionalized using x = x̃/H, y = ỹ/H, t = (u0/H ) t̃ , u = ũ/u0, where H is
the half-duct width, u0 is the velocity of the undisturbed flow, and the tilde denotes
a dimensional quantity. The half-duct width is a measure of the combustion length
scale, whereas the duct length is a measure of the acoustic length scale. The flame
sheet is located at the Z = 0 surface (stoichiometric level surface). It is assumed that
the fuel and oxidizer inlet ports are rectangular with the middle slot carrying the fuel
and the outer two slots carrying the oxidizer. Hence, Z must satisfy the following
boundary conditions (Chung & Law 1984):

(i) At the walls, y = ±1,
∂Z

∂y
= 0, 0 � x < lc

(ii) At the root of the flame, x = 0

Z = −Yi, −α � y � α,

Z = Xi, −1 � y � −α, α � y � 1,

(ii) At the exit of the duct, x = lc,
∂Z

∂x
= 0

where, lc is the non-dimensional distance between the duct end and the flame location,
and Xi and Yi are the non-dimensional oxidizer and fuel mass fractions at the inlet,
respectively. Since the combustion zone is much smaller compared to the acoustic
length scale (2H/La � 1), the outflow condition can be applied at infinity (Tyagi et al.
2007). However, in the present paper, the outflow conditions are applied at the duct
end. The above boundary conditions must be supplemented by an initial condition. In
this paper, it is assumed that a steady Burke–Schumann flame is perturbed initially
which leads to unsteady combustion oscillations. It is possible to model the flame using
other physical boundary conditions such as flux boundary condition which was used
by Tyagi et al. (2007). In the present analysis, the boundary conditions by Chung &
Law (1984) are used.

The above equation is solved using the Galerkin technique (Meirovitch 1967) and
the solution can be written as,

Z =
∑

m

∑
n

cos(nπy) sin

((
m + 1

2

)πx

lc

)
G(n)

m (t) + Zst , (5)

where Zst is the solution of steady Burke–Schumann equation (see Appendix B).
The Galerkin technique makes use of the fact that any function in a domain can
be expressed as a superposition of expansion functions which form a complete basis
in that domain. The basis functions are chosen such that they satisfy the boundary
conditions. However, the choice of the basis functions is not unique. The basis
functions chosen here are just an arbitrary basis and not the eigenfunctions of the
system. Clearly, the expansion functions chosen here satisfy the boundary conditions
and they form a complete basis.
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Substituting the expression for Z in (4), and projecting along the basis functions†,
the following evolution equation for Gn

m(t) is obtained,

Ġ(n)
m + u(t)

∑
k

WmkG
(n)
k = −

(
m + 1

2

)2
π2

l2cPe
G(n)

m − n2π2

Pe
G(n)

m + [u(t) − 1] C(n)
m , (6)

where

C(n)
m = −

∫ lc

0

∫ 1

−1

∂Zst

∂x
sin

(
m + 1

2

)πx

lc
cos(nπy) dy dx,

Wmk =
(
k + 1

2

)π

lc

∫ lc

0

sin

[(
m + 1

2

)
πx

lc

]
cos

[(
k + 1

2

)
πx

lc

]
dx

=

[
1 − cos(m + k + 1)π

2(m + k + 1)
+

1 − cos(m − k)π

2(m − k)

] (
k + 1

2

)
. (7)

It can be seen from (6) that the evolution equations for the amplitude of the mth
basis function depends on the amplitude of the kth Galerkin mode. Further, it can
be seen from (7) that the dependence of the amplitude of the mth Galerkin mode
on the amplitude of the kth Galerkin mode is different from the dependence of the
kth Galerkin mode on the mth Galerkin mode. In other words, the matrix W does
not commute with its adjoint. Hence, the evolution equations are non-normal. The
eigenvectors of non-normal matrices are not orthogonal and hence the amplitude of
each mode depends on the amplitude of other modes. Equation (6) can be written
as a first-order matrix differential equation by considering only a finite number of
Galerkin modes as follows:

˙̃G
(n)

+ u(t)[W ]G̃(n) = −[D](n)G̃(n) − C(n) [u(t) − 1] , (8)

where, G̃(n) =
[
Gn

1 Gn
2 Gn

3 · · · Gn
M

]T
; [D](n)

mm = − 1

Pe
diag

((
m + 1

2

2)π2

l2c
+ n2π2

)
, (9)

and the elements of the matrix W are shown in (7). The first-order matrix differential
equation can be solved analytically if the velocity profile at the flame is prescribed.
The solution can be written as,

G̃(n)(t) = G̃(n)(0) − IF−1(t)

∫ t

0

IF (t ′)C̃(n)[u(t ′) − 1] dt ′. (10)

G̃(n)(0) = 0 for an initially steady flame. IF (t) is the integrating factor of the first-order
matrix differential equation

IF (t) = exp

[
[W ]

∫ t

0

u(t ′)dt ′
]

exp[D]t.

It can be inferred from the solution that Z has exponential dependence on the
amplitude of acoustic perturbations and hence the combustion response to external
velocity perturbations is nonlinear even though the evolution equations are linear. It
will be shown in § 4 that, in a self-excited system where the combustion oscillations and
acoustic oscillations are coupled, the evolution equations themselves are nonlinear.

† The component or the projection of a function f along a basis function ψn is given by their
inner product 〈f |ψn〉 which is defined as

∫
domain

f (x)ψn(x) dx.
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The evolution equations when linearized yield non-orthogonal eigenvectors which
lead to transient growth. The coupled response will be discussed in detail in the next
section.

It is necessary to calculate the heat release rate to study the coupled response and
it can be done as follows (Tyagi et al. 2007). The Burke–Schumann temperature field
(non-dimensionalized by QH/Cp) is given by:

Tbs = Ti + Xi(Yi + Z)/(Xi + Yi) for Z � 0; Tbs = Ti + Yi(Xi − Z)/(Xi + Yi) for Z � 0,

(11)

where, Ti is the non-dimensional inlet temperature, and QH is the heating value
of fuel per unit mass of the mixture. The above expression for temperature is an
exact solution of the energy equation in the infinite reaction rate assumption and
for Dirchlet boundary conditions for both energy and Z equations, if the pressure
oscillations are negligible. This happens when the Mach number of the mean flow
is very low. The heat release rate can then be calculated from the temperature field
using thermodynamic relations (Tyagi et al. 2007). In deriving the expression for
the temperature field, the effect of pressure oscillations are assumed to be negligible
when compared to the effects of convection, diffusion and reaction in the infinite-
rate chemistry assumption. This is shown in Appendix A. The heat release rate
(non-dimensionalized by the heating value of fuel) is given by,

Q̇c =

∫
V

(
dTbs

dt
+ Tbs∇ · u

)
dV =

∫
V

(
∂Tbs

∂t
+ ∇ · (Tbsu)

)
dV , (12)

where u is the net velocity in the combustion domain and it is directed along the
length of the duct. The average heat release rate is given by,

Q̇av =
∑ ∑ dG(n)

m

dt
(Rnm) +

∑ ∑
u(t)G(n)

m Jnm + Qst (u(t) − 1)

= [R]
dḠ

dt
+ u(t) [J ] Ḡ + Qst (u(t) − 1) , (13)

where Ḡ = [G̃(1) G̃(2) G̃(3) · · · G̃(n) · · · G̃(N)]T ,

Rnm =

∫ lc

0

∫ 1

−1

[
θ(−Z)

Yi

Xi + Y1

− θ(Z)
Xi

Xi + Y1

]
sin

(
m + 1

2

lc
πx

)
cos (nπy) dy dx,

Jnm =

∫ 1

−1

[
θ(−Z(lc, y))

Yi

Xi + Y1

− θ(Z(lc, y))
Xi

Xi + Y1

]
(−1)m cos (nπy) dy,

and θ is the step function. The dependence of G̃(n) on the imposed velocity is
given by (10). In this case, it is assumed that the velocity field is prescribed as a
function of time and it is independent of the combustion process. We would like to
emphasize that when there is feedback from the acoustic field, the acoustic velocity
will depend on G̃(n). This coupling between the acoustic field and the combustion
zone is discussed in the next section. However, it can be seen from the above equation
that the heat release rate is a nonlinear function of the acoustic variables, since
G̃(n) has exponential dependence on the velocity. As shown earlier, the combustion
modes are non-normal, leading to the interaction between combustion modes. Since
the combustion process interacts with the acoustic field, the interaction between
combustion modes will lead to interaction between acoustic modes. The interaction
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process is further complicated if nonlinear acoustics is considered. To focus attention
on the non-normal and nonlinear behaviour of the combustion response, we have
modelled the acoustic field using a one-dimensional linear acoustic model as in Tyagi
et al. (2007).

4. Interaction between the combustion process and the acoustic field
In this section, coupled ordinary differential equations that describe the interaction

between the combustion process and acoustic field are derived. Assuming a perfect,
inviscid and non-heat-conducting gas, the governing equations for the one-dimensional
acoustic field in the absence of mean flow and mean temperature gradient in the duct
are (Tyagi et al. 2007):

Acoustic momentum:

ρ0

∂ũ′

∂t̃
+

∂p̃′

∂x̃
= 0, (14a)

Acoustic energy:

∂p̃′

∂t̃
+ γp0

∂ũ′

∂x̃
= (γ − 1) ˙̃Q′, (14b)

where, p̃′ is the acoustic pressure, ũ′ is the acoustic velocity and, ˙̃Q′ the unsteady heat

release rate. The expression for ˙̃Q′ can be related to ˙̃Q′
c through dimensional constants

as ˙̃Q′ = ρ0cpTref (u0/H ) ˙̃Q′
c. The above equations can be non-dimensionalized as

x̃ = Lax; t̃ = (La/c0)t; ũ′ = u0u
′; p̃′ = p0p

′; M = (u0/c0);

where La is the length of the duct, the subscript ‘0’ indicates quantities in the
undisturbed medium. The time scale used to non-dimensionalize the combustion
equation is H/u0, whereas the time scale used to non-dimensionalize the acoustic
equations is L/c0.

The duct is assumed to be open at both ends and hence the acoustic pressure
vanishes at the ends. The unsteady heat release is assumed to be a compact source;
i.e. 2H/La � 1 (Tyagi et al. 2007). Equations (14a) and (14b) can then be rewritten
in the dimensionless form as,

γM
∂u′

∂t
+

∂p′

∂x
= 0, (15)

∂p′

∂t
+ γM

∂u′

∂x
= (γ − 1)γ

La

c0

˙̃Qav

ρ0c
2
0

δ(x − xf )

La

, (16)

where ˙̃Qav is the heat release rate averaged over the combustion zone, and xf is
the flame location. Equations (15) and (16) are nonlinear as the heat release has a
nonlinear dependence on the acoustic field.

The acoustic field is solved in the time domain using the Galerkin technique
(Dowling 1995; Dowling & Stow 2003). The acoustic pressure and acoustic velocity
can be written as:

u′ =

N∑
j=1

ηj cos(jπx), p′ = −
N∑

j=1

γM

jπ
η̇j sin(jπx). (17)
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The velocity used in (4) is the sum of acoustic velocity evaluated at the flame location
xf and the base flow. The Galerkin mode functions chosen for the acoustic variables
satisfy the boundary conditions and form a complete basis as well. The basis functions
are the eigenmodes of the self-adjoint part of the linearized operator, i.e. the natural
modes of a duct in the absence of the flame. The following evolution equations for
the acoustic field are obtained after substituting the expressions for acoustic velocity
and pressure in the linear acoustic equations and integrating over the duct (domain
for the acoustic field) after multiplying by the basis functions,

dηj

dt
= η̇j ,

dη̇j

dt
+ k2

j ηj = − 2kj Q̇av

(Ti + Tad)/2
sin(jπxf ), (18)

where Ti is the inlet temperature, Tad is the adiabatic flame temperature and kj is the
wavenumber corresponding to the j th Galerkin mode.

Further, the role of damping on the growth and saturation of oscillations is also
studied. The damping model used in this paper is same as that considered by Matveev
(2003). In the presence of damping, the above set of equations can be modified as
follows:

dηj

dt
= η̇j ,

dη̇j

dt
+ 2ξjωj η̇j + k2

j ηj = − 2kj Q̇av

(Ti + Tad)/2
sin(jπxf ), (19)

where the damping constant is given by:

ξj =
1

2π

[
c1

ωj

ω1

+ c2

√
ω1

ωj

]
, (20)

where ωj is the wavenumber of the j th mode, ω1 is the wavenumber of the first
mode. Damping is higher for higher wavenumbers. Hence higher wavenumbers in
the oscillations decay rapidly, when there is no mechanism to drive the higher
wavenumber. Damping occurs owing to acoustic boundary-layer losses which are
modelled as a volumetric source term and owing to sound radiation losses at the ends
and convection of sound by the mean flow.

The expression for heat release rate in (12) can be written in matrix form as,

Q̇av =
∑ ∑ dG(n)

m

dt
(Rnm) +

∑ ∑
u(t)G(n)

m Jnm + Qst (u(t) − 1)

= [R]
dḠ

dt
+ u(t) [J ] Ḡ + Qst (u(t) − 1) , (21)

where Ḡ, [R] and [J ] are defined after (13). The nonlinearity in the heat release
rate is due to the dependence of Ḡ on the fluctuating velocity (equation (8)). In this
situation, when there is feedback, it is not possible to solve for the combustion field
independently. The nature of combustion–acoustic interaction is determined by the
set of equations in (8) and (18)–(19).

Equations (18)–(19) and (21) show that the advection velocity is a function of the
amplitude of the combustion modes. This makes the advection term in (8) nonlinear.
Hence, the coupled equations governing the combustion–acoustic interaction are
nonlinear. Apart from being nonlinear, the combustion equations are also non-normal
as discussed earlier. The coupled equations can be written in matrix form as follows:

M
dχ

dt
+ BNL(χ)χ + BNNχ = 0, (22)
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where χ = [GM×N ϕ2K×2K ]T , ϕ2K×2K = [η1 η̇1. . . ηK η̇K ]. The expanded forms of the
matrices are presented in Appendix B. The above system of equations is integrated
using the fourth-order Runge–Kutta technique. In (22), BNL is the matrix which leads
to nonlinear interaction and BNN is the matrix which leads to non-normal growth of
the oscillations. This equation has the same form as that of the evolution equations
discussed by Trefethen et al. (1993), Gebgart and Grossman (1994) and Baggett et al.
(1995) and hence it is expected that the above system might show similar behaviour
as discussed in these references.

Equation (22) when linearized yields:

M
dχ

dt
+ BNNχ = 0 or

dχ

dt
= Lχ where L = −M−1BNN. (23)

In (23), L is called the stability matrix (Schmid & Henningson 2001) and it is
purely non-normal. When the real part of all eigenvalues of matrix L is negative,
the oscillations of the linearized system eventually decay. However, because of the
non-orthogonality of the eigenvectors, it is possible for the linearized system to exhibit
large transient growths triggering the nonlinearities as illustrated in figure 1. In the
next section, we will use (23) to study the transient growth of the above system of
equations and analyse the stability of combustion–acoustic interaction.

5. Transient growth
The thermoacoustic system described in § 4 has a non-normal evolution, which

leads to transient energy growth. As discussed earlier, transient growth plays an
important role in amplifying the initial disturbances to a value high enough that
nonlinear effects can play a significant role. Hence, it is necessary to identify the
initial conditions for which the transient growth is maximum. Schmidt & Henningson
(2001) give a detailed discussion on the analysis of transient growth, in the context of
transition to turbulence in shear flows. They analysed the stability of shear flows by
studying the energy growth of the system. However, their analysis is quite general and
can be applied to thermoacoustic systems as well. In this analysis, the development
of a general solution of the linearized system is considered rather than the individual
eigenmodes of the system. The evolution operator (matrix) of the coupled combustion–
acoustic system described by (23) is non-normal as, LL† �= L†L. The solution of this
system can be written in the operator form as (Schmid & Henningson 2001)

η̃(t) = exp(Lt)η̃(0) = S−1 exp(LDt)Sη̃(0) (24)

where, L is the stability operator, S is the similarity transformation that diagonalizes
L, and LD is the diagonal form of L. Since L is non-normal, S is non-unitary,
indicating that it is not possible to make the eigenvectors perpendicular by a simple
rotation or by a different choice of basis functions. The maximum amplification of
the energy density is defined as the growth factor which is given by (Schmid &
Henningson 2001),

G(t) = max
η̃(0)

‖η̃(t)‖2

‖η̃(0)‖2
= ‖exp(Lt)‖2

, (25)

where ‘max’ indicates that the ratio is maximized over all possible initial conditions.
The initial condition η̃(0) that maximizes the growth factor G(t) is different for
different times and hence the maximum growth (corresponding to this initial
condition) is the envelope of the energy evolution of all possible initial conditions
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(Schmid & Henningson 2001). The expression in (25) is maximized for various instants
of times over all possible initial conditions. This is achieved through singular value
decomposition. The initial condition corresponding to the maximum singular value
is chosen as the initial condition leading to maximum growth rate. The maximum
growth factor in a particular time interval [0, t] is defined as Gmax = max

t
G(t).

If there exists an unstable eigenvalue, then the above maximum value is infinite. This
corresponds to the linearly unstable system. The Gmax values for various parameters
are calculated and the regions with large transient growth are identified. The Gmax =1
contour separates parameter combinations for which transient growth may occur
from those for which energy decay must occur. When Gmax = 1, then the energy
at any instant is less than the initial energy of the system and when Gmax > 1, the
system will exhibit transient growth. Hence, a system which is linear to begin with
will behave like a linear system throughout its evolution as there is no amplification
of the oscillations to trigger nonlinear effects, when Gmax = 1. This enables us to study
the range of parameters for which the system is linearly stable, linearly unstable and
the region where transient growth is significant.

6. Pseudospectra
If a linear operator is normal, then the degree of resonant amplification that may

occur in response to an input frequency is inversely proportional to the distance in the
complex plane between the input frequency and nearest eigenvalues. However, for a
non-normal operator, the resonant amplifications may be orders of magnitude greater
(Trefethen et al. 1993). The resonances of a non-normal system are not determined
by the eigenvalues alone. Such a resonance of a non-normal system is known as
pseudoresonance.

The concept of ε-pseudoeigenvalues can be used to analyse the behaviour of
evolution governed by such non-normal operators (Trefethen & Embree 2005). z is an
ε-pseudoeigenvalue of A if it satisfies ‖(zI − A)−1‖ � ε−1. There are other equivalent
definitions of pseudoeigenvalues and they have been discussed in detail by Trefethen &
Embree (2005). The geometry of pseudospectra reveals information about transient
growth factor and the non-normal nature of the operator. The pseudospectra of
normal operators are closed circles. When a contour corresponding to some ε value
does not lie entirely in the left half-plane, the system exhibits transient growth, causing
the amplitudes to increase to high values (Trefethen et al. 1993). Further, it is possible
to obtain necessary and sufficiency conditions for an oscillation to be stable based on
the geometry of pseudospectra. These conditions are presented in § 7.

7. Results and discussion
The acoustic modes are normal in the absence of combustion. However, the presence

of combustion makes the system non-normal, as can be seen from the following
physical arguments. A small disturbance in velocity causes the combustion process
to become unsteady and it in turn acts as the source of acoustic oscillations. The
acoustic field in a duct is driven by combustion when the combustion oscillations
are in phase with the acoustic oscillations. The phase lag between the two processes
itself evolves with time and hence the phase difference between the combustion and
the acoustic oscillations depends on the phase difference between the two processes
at an earlier time. Combustion drives that mode of acoustics which is in phase with
the combustion process. Since the phase difference between the combustion and a
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particular mode of the acoustic field depends on the phase difference at an earlier
time, the interaction would depend on that mode of the acoustic field which was
in phase with combustion at an earlier time. Hence, the mode which is excited at a
particular instant of time depends on which mode was excited at an earlier time. In
general, this would lead to a complicated interaction between various modes, which
would lead to non-orthogonal behaviour of the eigenmodes. This is the defining
characteristic of non-normal systems.

The non-normality of the combustion process is present even in the absence of the
feedback from the acoustic field. This is because the non-normality in the combustion
process is due to convection, which transports heat from a ‘hot’ region to a region
which is colder. This process is different from diffusion; diffusion is a gradual process
in which the direction of transport is the same as the direction of the thermal
gradient, unlike convection in which it is the direction of the flow. Hence the base
flow convects heat from a hot region to a cold region where the relative amplitude
of the heat release oscillations increases. This causes interaction among various
combustion modes. Hence, it can be seen that the eigenmodes are non-orthogonal
in this case as well, as two different oscillatory modes, i.e. the oscillatory conduction
and the oscillatory convection, are interdependent. This behaviour is analogous to
the kind of behaviour in vortical flows that leads to formation of streaks (Trefethen
et al. 1993) at the onset of transition to turbulence. The feature discussed above can
also be thought of as an entropy wave as entropy is convected with the flow.

T

[
∂s

∂t
+ u(t)

∂s

∂x

]
= − 1

Pe

[
∂2s

∂x2
+

∂2s

∂y2

]
+ Qδ(Z). (26)

The flame sheet acts as a localized source of entropy disturbance, and (26) describes
the propagation of this disturbance to other regions in space. The entropy disturbance
propagates with the flow velocity and also diffuses to other regions. This movement
of entropy disturbance is similar to the advection of vorticity disturbance in shear
flows causing the occurrence of structures such as streaks (Trefethen et al. 1993).
The non-normality of the combustion process is essentially due to the movement of
entropy disturbances from regions of high entropy to low entropy. The advection of
entropy disturbances causes the various eigenmodes of the system to be interrelated,
thereby making it non-normal.

Balasubramanian & Sujith (2007) studied triggering of thermoacoustic instabilities
in a Rijke tube. In this paper, a correlation for the heat release rate given by Heckl
(1990) was used instead of solving the advection–diffusion equation. This simplified
approach was followed in order to focus on the non-normal nature of the acoustic
equations alone in the presence of heat source. This study showed that the presence of
a heat source makes a thermoacoustic system non-normal, even though the thermal
modes were not considered.

The effect of non-normality on the evolution of a thermoacoustic system is presented
in the following subsections. Test numerical simulations were performed for different
choices for the number of acoustic and combustion modes used in the Galerkin
technique and the number of modes was chosen (for subsequent simulations) such
that the change in the solution is within 5%, if additional modes are introduced. It was
observed that 900 combustion modes (30 for y-dependence and 30 for x-dependence)
and 4 acoustic modes are sufficient. To be conservative, 2500 combustion modes (50
for the y-dependence and 50 for x-dependence) and 6 acoustic modes were taken for
the calculations presented subsequently.
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7.1. Triggering of nonlinearities

If the system is non-normal as well as nonlinear, oscillations can grow even when the
individual eigenvalues indicate linear stability. For such systems, there exists some
initial condition for which the oscillations decay and some initial conditions for which
the oscillations grow. In this example, this feature is captured by a flame located at
3/4 duct length when the fuel slot width is 0.25. The Péclet number was chosen as 5.0,
Xi was chosen as 3.2, Yi was chosen as 3.2/7 and the duct length to duct width ratio
was chosen as 25.0. For reasons that will become clear later, damping is assumed to
be absent in this example. The initial conditions chosen are η1(0) = 0.1, ηi �=1(0) =0 and
η̇i(0) = 0. Figures 4(a) and 4(b) show that the oscillations decay even though there
are several periods of short time growth. This indicates that in this case, transient
growth is not sufficient to trigger the nonlinearities. Figure 4(c) shows the variation of
heat release rate with velocity, also known as the phase portrait. The phase portrait
is elliptically spiralling inwards, which indicates that the response of heat release rate
to velocity fluctuations is almost linear. The elliptical nature also indicates that there
is a phase difference between the heat release rate and the velocity perturbations.

Figure 5(a) shows that for the same thermoacoustic system, for a different
initial condition, i.e. η1(0) = 0.5, η̇1(0) = 0.5, ηi �=1(0) = 0 and η̇i �=1(0) = 0 the oscillation
grows and saturates. The evolution of the non-dimensional acoustic energy
(1/2p′2/(γM)2 + 1/2u′2) after locally weighted regression smoothing (LOWESS) has
been calculated from both linear and nonlinear simulations and is presented in
figure 2. This is a measure of the average acoustic energy in a cycle. The results of
linear simulation are obtained by solving the linear system of equations in (23). The
results of the nonlinear simulation are obtained by solving the system of equations
in (22). Linear simulation shows that the acoustic energy grows for a short time and
then decays. Nonlinear simulation is almost identical to the linear simulation initially.
After sufficient transient growth, the nonlinearity ‘picks up’ which can be seen from
the deviation of the nonlinear evolution from the linear evolution. Figure 5(b) shows
that after some time the mean value of heat release rate changes with time, indicating
nonlinear behaviour. The nonlinear response of the heat release rate can also be
seen from the fractal behaviour exhibited by the phase portrait shown in figure 5(c)
which shows folds similar to Rossler bands. Such fractal behaviour, known as folds,
has been discussed in the context of premixed flames by Fichera, Losseno & Pagano
(2001).

Another interesting feature shown by the system is saturation in the absence of
damping. It is known from the Rayleigh criterion that there is acoustic driving when
the instantaneous acoustic pressure is in phase with the instantaneous value of heat
release rate. The phase φ(t) between the pressure and heat release oscillations at any
instant is defined as

cos φ(t) =

∫ t

0

p′(t ′)Q′(t ′) dt ′

/√∫ t

0

p′2(t ′) dt ′

√∫ t

0

Q′2(t ′) dt ′.

The above expression is the correlation between pressure and heat release rate signals.
Saturation can occur when the phase difference between the pressure oscillations and
the heat release rate becomes 90◦ (W. Polifke, personal communication 2006). When
the heat release rate and pressure oscillations differ by a phase of 90◦ then, at that time
instant, the growth rate of energy is zero and hence further growth is not possible.
Hence when the phase difference becomes 90◦ and if it remains a constant, then
the oscillations will saturate. This can be inferred from figure 5(d) which shows the
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Figure 4. The evolution of (a) acoustic velocity, (b) heat release and (c) phase portrait at the
flame location for a case where the initial condition corresponds to excitation of the first duct
mode; η1(0) = 0.1; xf = 3/4; Pe = 5.0, Xi = 3.2, Yi = 3.2/7, α = 0.25 and La/(2H )= 25.

evolution of phase difference to 90◦ as the oscillation saturates. Saturation of the
oscillations also indicates the existence of an attractor (as the system tends towards a
limit-cycle operation) and the fractal dimension of the attractor is found to be 1.68.
The fractal dimension is obtained using a box-counting technique. There are various
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Figure 5. (a) Evolution of acoustic velocity at the flame location; (b) heat release evolution
and (c) phase portrait for a case with the initial condition η1(0) = 0.5, η̇1(0) = 0.5. (d) The
evolution of the phase difference (in radians) between heat release and acoustic pressure to
π/2 as the amplitude saturates. xf = (3/4) Pe = 5.0, Xi = 3.2, Yi = 3.2/7, La/2H = 25.

definitions of fractal dimension; here we have referred to the box-counting
dimension as the fractal dimension. (The box-counting dimension is given by
DB = limδ→0[log(N )/log(1/δ)] where N is the number of boxes of side length δ used
to cover the attractor and is calculated by calculating the slope of the log(N )–log(1/δ)
plot).

Wicker et al. (1996) define triggering combustion instability in the context of
their study of combustion instabilities in rocket motors as ‘initiation of unstable
pressure oscillations by a finite amplitude pulse in a system that is otherwise stable to
small perturbations’. The studies of Culick, Burnley & Swenson (1995) Wicker et al.
(1996), and Anathkrishnan, Deo & Culick (2005) have attributed triggering to
nonlinear combustion. These studies include the effect of nonlinear acoustics as well,
although they state that nonlinear acoustics alone is insufficient to cause triggering.
The present study highlights the role of non-normality in the occurrence of triggering
combustion instabilities. The transient growth arising because of the non-normality
of the thermoacoustic system triggers nonlinearities when the amplitude reaches high
enough values, resulting in further growth of the oscillations.
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7.2. Growth of oscillations in an initially decaying system

This section discusses bootstrapping in a thermoacoustic system which is stable
according to classical linear stability analysis based on eigenvalues. In this example,
the flame is located at 1/4 duct length and the fuel slot width is 1/4. The Péclet
number was chosen as 10.0, Xi was chosen as 3.2/7, Yi was chosen as 3.2 and the
duct length to duct width ratio was chosen as 12.5. The initial conditions chosen are
η1(0) = 0.1, ηi �=1(0) = 0 and η̇i(0) = 0.

Figure 6(a) shows that although the low-frequency oscillations that are initially
excited in the system decay, high-frequency oscillations sets in after some time. It
must be emphasized that classical linear stability analysis based on the eigenvalues
shows all eigenmodes of the coupled system to be stable.

If the eigenmodes are orthogonal, there is no energy exchange between them.
However, for a non-normal system, the eigenmodes are non-orthogonal, and energy
can be redistributed among the various modes owing to the interaction of the modes
with the base flow. Although the basis functions used in the Galerkin expansion are
orthogonal, they are related to the eigenmodes using a non-orthogonal transformation,
as the system is non-normal. This results in an exchange of energy projected into the
Galerkin functions.

Figure 6(b–d) shows the evolution of the energy projected on the first three
Galerkin expansion functions. It can be seen that while the energy projected to the
first expansion function decays, the projection on the second and third expansion
functions grow. After sufficient energy is projected onto the second and third
expansion functions, they project energy back, causing the energy projected on the first
expansion function to grow. This bootstrapping results in a shift in frequency during
the evolution. The net effect of all these energy transfers causes the acoustic velocity
to grow and eventually saturate. This feature has been discussed in the context of
turbulence and it is known as ‘bootstrapping’ (Gebgart & Grossman 1994; Baggett
et al. 1995). Yoon, Peddieson & Purdy (2001) have discussed ‘bootstrapping’ in the
context of a Rijke tube using an ad hoc nonlinear model for the heat release rate.

Figures 6(e) and (f ) show the heat release rate spectra for 0 < t < 9 and 9< t < 60,
respectively. (In these plots, ω is the non-dimensional frequency.) The dominant
frequency during the period 0 < t < 9 dies and is absent for 9 < t < 60. It can be
seen that there are several peaks in the second part of the evolution, indicating the
generation of higher frequencies. The dominant non-dimensional frequency is 1.38 in
the second part of the evolution. This frequency does not correspond to any natural
frequency of the duct. This feature of combustion instabilities occurring at frequencies
that are far from the natural acoustic frequencies was discussed in the context of dump
combustors by Matveev & Culick (2003) and experimentally observed by Schadow
et al. (1989). Figure 6(g) shows the flame shape at different instants of time during the
limit cycle. Figure 6(h) shows the corresponding non-dimensional acoustic velocity in
the combustion zone. It can be seen that the flame shape oscillates with the acoustic
velocity, with the flame periodically elongating and contracting without wrinkling.
This results in the oscillation in heat release rate. Further, it can be seen that the
time-averaged flame shape is not the same as the steady Burke–Schumann flame; the
time–averaged flame is longer than the steady flame.

The occurrence of harmonic frequency generated by oscillating flames was
experimentally observed by Lang (1991). The generation of higher harmonics is
usually attributed to the nonlinear nature of the interaction. However, there can be
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Figure 6. (a) The evolution of acoustic velocity at the flame location with time. (b–d) The
projection of the acoustic velocity onto the Galerkin modes. (e, f ) The heat release rate spectra
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48 K. Balasubramanian and R. I. Sujith

0 10 20 30
–1

0

1(a)

(b)

(c)

(d )

u′

0 10 20 30
–1.5

–1.0

–0.5

0

0.5

1.0

1.5

0 10 20 30

1

2

3

t

P
ha

se

0 10 20 30

0.4

0.8

1.2

1.6

t

Figure 7. (a) Evolution of acoustic velocity at the flame location for a case with the initial
condition η1(0) = 0.5, η3(0) = 0.5, ηi �=1,3 (0) = 0 and η̇i(0) = 0; (b) evolution of acoustic
velocity, for a case with the initial condition η3(0) = 0.5, ηi �=3(0) = 0 and η̇i(0) = 0;
(c, d) evolution of phase between heat release and acoustic pressure xf = 1/4, Pe = 10.0, Xi =
3.2/7, Yi = 3.2, La/2H= 12.5, c1 = 0.015, c2 = 0.001.

redistribution of energy in two ways. The first is a nonlinear mechanism where two
individual eigenmodes interact directly causing exchange of energy between the two
modes. Another mechanism which causes redistribution of energy is the interaction
of various eigenmodes with the base flow. At lower amplitudes when nonlinear effects
are insignificant, redistribution of energy occurs mainly because of the interaction of
the various modes with the base flow.

7.3. Effect of damping

The effect of damping on the non-normal nature of the system is studied in this
example. The damping coefficients c1 and c2 are taken to be 0.015 and 0.001,
respectively. The evolution of the acoustic field for two different initial conditions
is studied for a system whose eigenvalues indicate linear stability. The slot width is
taken to be 0.25. Figure 7(a) shows the evolution of acoustic velocity for the initial
condition η1(0) = 0.5, η3(0) = 0.5, ηi �=1,3(0) = 0 and η̇i(0) = 0. Figure 7(b) shows the
evolution of acoustic velocity for the initial condition η3(0) = 0.5, ηi �=3(0) = 0, η̇i(0) = 0.
The amplitudes of the oscillations decay in the former case, whereas it grows and
saturates in the latter case. This indicates that non-normality of the system leads to
transient growth that triggers nonlinearities, in the presence of damping as well.

As shown in figure 7(c), the phase evolves to 90◦ indicating the absence of acoustic
driving for the first case. However, as damping is present, the oscillations decay.
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Figure 7(d) shows that the phase difference is not 90◦ as the amplitudes saturate
in the second case. As we approach the limit cycle, the phase difference tends to a
value which will result in just adequate driving to balance the damping in the system.
Though damping is not essential for saturation to occur, it plays an important role
in the evolution of the perturbation.

7.4. Transient growth

In this section, the dependence of the transient growth factor on various parameters
such as Péclet number, slot width, and the ratio of combustion scale to acoustic
length scale is studied. The effect of damping is not taken into account, as it is highly
system specific. First, the variation of growth factor with duct length to duct width
ratio is studied. This ratio is found to be critical in combustion instability (Tyagi et al.
2007). Figure 8 shows the variation of the maximum growth factor with duct length
to duct width ratio for a flame that is located at 1/4 duct. The non-dimensional
slot width is chosen as 0.25, Pe = 10 and Xi = 3.2/7, Yi =3.2. It is observed that the
growth factor increases monotonically. This implies that the growth factor becomes
larger as the flame becomes more compact. The heat release rate is considered to be
a point source in our analysis. The strength of this point source increases as the flame
becomes more and more compact, causing the flame to be a stronger source for the
acoustics. Hence, the growth factor is larger for a compact flame.

Figure 9 shows the variation of growth factor with Péclet number for a flame located
at 1/4 duct length. The non-dimensional fuel slot width is 0.25, Xi = 3.2/7, Yi = 3.2
and La/2H = 12.50. It is clear that the growth factor increases monotonically.
This is because non-normality becomes pronounced as the convective effects become
significant, i.e. large Péclet numbers. The growth factor is infinite for Péclet numbers
larger than 25, indicating that the thermoacoustic oscillations are linearly unstable.

Figure 10 shows the variation of growth factor with slot-width ratio for a flame
located at 1/4 duct length. The Péclet number is 10.0, Xi = 3.2/7, Yi = 3.2 and
La/2H = 12.50. The growth factor is infinite for α � 0.1, which indicates that the
system is linearly unstable for α � 0.1. It is seen that the variation of growth factor
with slot width is non-monotonic.
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Figure 9. The variation of maximum growth factor with Péclet number. The flame is located
at 1/4 duct length, α =0.25, Xi = 3.2/7, Yi = 3.2, La/2H = 12.5.
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Figure 10. The variation of maximum growth factor with fuel slot width to duct width ratio.
The flame is located at 1/4 duct length, and Pe = 10, Xi = 3.2/7, Yi = 3.2, La/2H = 12.5.

7.5. Pseudospectra

As discussed in § 5, the non-normal nature of an operator can be studied using the
geometry of the pseudospectra. Necessary and sufficient conditions for a system not
to exhibit growth (transient or exponential) are obtained based on the geometry of
the pseudospectra. Trefetehen et al. (1993) have used the relation between geometry
of the pseudospectra and the lower bound on the transient growth factor to analyse
hydrodynamic instability in Couette and Poiseuille flows. The lower bound on the
transient growth factor is given by

max
t

‖etA‖ � max
ε

max
z∈Γ (ε)

Re(z)

ε
. (27)

It is clear from (27) that if the contour protrudes far into the right-hand half-plane,
then the system will exhibit large transient growth. Hence, for a system not to grow
(transient for any initial condition or exponential growth), pseudospectra must lie
entirely on the left half-plane. This is a necessary condition.

Further, the relation between the upper bound on the transient growth factor and
the geometry of pseudospectra is used to obtain a sufficiency condition for a system to
be stable. The evolution operator etA can be defined by the Dunford–Taylor integral
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(operator analogue of the Cauchy integral),

etA =
1

2πi

∫
Γ

(z − A)−1etzdz, (28)

where Γ (ε) is the boundary of pseudospectra corresponding to some ε. Hence, the
norm of the evolution operator is bounded by the Cauchy integral of |etz|‖(z − A)−1‖.
When Γ encloses the ε-pseudospectra, then the upper bound for the transient growth
factor can be written as (Trefethen & Embree 2005),

‖exp(tA)‖ �

[
Lε

2πε
max
z∈Γ (ε)

|exp(tz)|
]

. (29)

where Lε is the length of the contour (or convux hull) Γ (ε). Choosing A as the
stability operator L, the upper bound on the maximum growth rate is given by,

Gmax = max
t

‖exp(tL)‖2 � max
t

[
Lε

2πε
max
z∈Γ (ε)

|exp(tz)|
]2

. (30)

Hence a system is stable if the real parts of all the eigenvalues are negative and
if the right-hand side of the above expression is 1. Hence, if the pseudospectra lies
entirely in the left-hand half-plane and if Gmax = 1, then the system will not grow for
any initial condition.

The Rayleigh criterion gives the condition for acoustic driving to occur. However,
the prediction of transient growth by Rayleigh criteria requires precise knowledge
of the initial conditions. The ambiguity of initial conditions owing to noise makes
the identification of transient growth using Rayleigh criteria difficult. However, the
necessary and sufficiency conditions obtained in this paper are conditions on the
operator and hence do not depend on the initial conditions.

Figure 11 shows the pseudospectra for a thermoacoustic system with Pe = 10,

Xi = 3.2/7, Yi = 3.2, La/2H = 12.5. As in § 7.4, the effect of damping is not taken into
account, as it is highly system specific. It is clear from the non-circular behaviour
that the system is highly non-normal. Figure 11(a) shows the nature of pseudops-
ectra close to the origin. It is clear that the contour is not entirely on the left
half-plane. Hence, it can be inferred from (27) that this system shows transient
growth. This indicates that there is an ‘unstable’ pseudoeigenvalue for some ε. Even
if a system behaves linearly, the transient growth can cause the amplitudes to reach
high values, which could lead to triggering. Figure 11(b) shows the pseudospectra
over a larger domain. It can be seen from figure 11(b) that the pseudospectra taper
towards the left-hand half-plane. This indicates that eigenvalues with large negative
real part are less sensitive to perturbations. This could be helpful in identifying the
significance of a particular mode in thermoacoustic oscillations.

8. Discussion
Current linear-system-identification approaches in the time domain, such as the

impulse response of the flame, give the combustion response in the time domain
(Polifke 2004), which indeed has the information on non-normality. However,
current network models convert the system response in time domain to a flame
transfer function in the frequency domain, and neglect the non-orthogonality of the
eigenvectors. This results in their failure to predict transient growth. However, the
current linear-system identification tools in the time domain, along with the tools
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Figure 11. (a) The pseudospectra of the thermo-acoustic system near the origin, (b) pseu-
dospectra about all the eigenvalues. The flame is located at 1/4 duct length, and
Pe =10, La/2H =12.5, Xi = 3.2/7, Yi = 3.2, α = 0.25. The dots denote the eigenvalues. The
value of log10 ε is indicated next to the contours.

based on the linearized operator suggested in this paper can indeed be used to predict
transient growth.

9. Conclusion
In this paper, the nature of flame acoustic interaction is studied in the context of

diffusion flames. The coupled combustion–acoustic system is non-normal and hence
the eigenvectors are non-orthogonal. Non-normality leads to short-time amplification
even though the individual modes decay exponentially. This transient growth can
trigger nonlinearities when the amplitude of the fluctuations is sufficiently large. It
has been observed that the various eigenmodes of the coupled combustion–acoustic
system interact resulting in the growth of oscillations, even when the eigenvalues
indicate stability. Non-normality and nonlinearity lead to triggering and redistribution
of energy between eigenmodes. Further, saturation occurs irrespective of the presence
or absence of damping. In the absence of damping, as the system approaches
the limit cycle, the phase difference between the pressure fluctuations and heat release
rate oscillations approaches 90◦. In the presence of damping, the phase difference
approaches a value which will result in adequate driving to balance the damping.

An analysis of transient growth revealed that the growth factor increased
monotonically with the ratio of the acoustic to combustion length scale and Péclet
number. However, the variation of growth factor with the non-dimensional slot width
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was not monotonic. For a non-normal system, ‘pseudoresonance’ is shown to occur
at frequencies far from the spectrum. The stability and sensitivity of non-normal
systems can be studied using pseudospectra. The pseudospectra of normal operators
are disjoint circles. The pseudospectra of the thermoacoustic system are non-circular,
implying a highly non-normal nature of the system. If the pseudospectra are not
entirely within the left half-plane, then the system can show transient growth. It is
possible to identify systems which cannot show transient growth by analysing the
pseudospectra. The geometry of the pseudospectra provides necessary and sufficient
conditions for the stability of a system.

The current methodology for studying the onset of thermoacoustic oscillations
involves looking for exponentially growing or decaying modes by calculating the
individual eigenvalues of the linearized system. Further, the nonlinear behaviour
of the combustion response is modelled using flame transfer functions which are
amplitude dependent. These approaches fail to predict phenomena such as nonlinear
growth triggered by the transient growth which results from the non-normality of
the thermoacoustic system and excitation of frequencies that are not initially excited.
More sophisticated approaches have to be taken and more involved methods have to
be introduced, to capture accurately the transient behaviour which is critical for the
overall system stability. However, the current linear system identification tools in the
time domain, along with the tools based on the linearized operator suggested in this
paper such as growth factor and pseudospectra, can be used to predict transient
growth.
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suggestions and interesting discussions.

Appendix A
It is shown in the following that in the infinite-rate chemistry assumption, the

pressure fluctuation term in the energy equation can be neglected

ρCp

∂T

∂t
+ ρCpu

∂T

∂x
= κ∇2T +

dp′

dt
.

The above equation is non-dimensionalized as follows:

ρCpTst

tcomb

∂T ∗

∂t∗ +
ρCpuTst

ūtcomb

∂T ∗

∂x∗ =
κρCpTst

κtcombPe
∇2T ∗ +

ρRTst

tac

(
dp′∗

dt∗

)
acoustic

.

The changes within the combustion zone happens at combustion time scales (tcomb)
except the pressure fluctuation which happens at acoustic time scale (tac). The above
equation simplifies to

∂T ∗

∂t∗ + u∗ ∂T ∗

∂x∗ =
1

Pe
∇2T ∗ +

tcomb

tac

(
dp′∗

dt∗

)
acoustic

.

Hence, in the infinite-rate chemistry assumption (tcomb/tac → 0), the last term on
the right-hand hand side can be neglected. Hence, the non-dimensionalized energy
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equation can be written as

∂T ∗

∂t∗ + u∗ ∂T ∗

∂x∗ =
1

Pe
∇2T ∗.

Appendix B
The steady Burke–Schumann solution is given by

Zst =Xi(1 − α) − Yiα +
∑

n

coshmn(x − L)

coshmnL
cos(nπy) − 2[(Xi + Yi) sin(nπα)]

nπ
,

where

mn = Pe/2 −
√

Pe2/4 + n2π2.

The expanded forms of the matrices used in (22) are presented below.

χ =
[
G1

1 G1
2 · · · Gn

m · · · GN
M η1 η2 · · · ηK η̇1/π η̇2/2π · · · η̇K/Kπ

]T
M = I +

2

(Ti + Tad)/2
M1,

where, matrix M1 can be written as a column vector and a row vector as follows,

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
.

0

0
.

0

sin πxf

sin 2πxf

.

sin Kπxf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[R11 R12 . . . RNM × NM 0 0 . . . 0](NM+2K)×(NM+2K)

The non-normal matrix can be expanded as BNN = −D + A1 − A2 + A3 − A4.
The nonlinear matrix can be expressed as BNL = A1[u(t)−1].

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1
1

D1
2

.

Dn
m

.

.

DN
M

0
.

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where Dn
m = −[(m + 1/2)2π2/L2 + n2π2]/Pe.

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
W (1)

]
[
W (2)

]
.

. [
W (NM)

]
0

0
.

.
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
[
W (i)

]
=

⎡
⎢⎢⎢⎢⎣

W11 W12 . . W1M

W21 W22 . . W2M

. . . . .

. . . . .

WM1 WM2 . . WMM

⎤
⎥⎥⎥⎥⎦.

Matrix A2 can be written as a product of a column vector and row vector as follows:

A2 = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
.

0

cos
(
πxf

)
.

cos
(
Kπxf

)
0
.

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
C

(1)
1 C

(1)
2 . . . CNM

NM 0 0 . . . 0
]
(NM+2K)×(NM+2K)

.

Matrix A3 is given by, A3 =

[
[0]NM×NM [0]NM×2K

[0]2K×NM [S]2K×2K

]
,

where S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . 0 −π 0 0 0
0 0 . 0 0 −2π 0 0
. . . . . . . .

0 0 0 0 0 0 0 −Kπ
π 0 0 0 −2ξ1 0 0 0
0 2π 0 0 0 −2ξ2 0 0
. . . . . . . .

0 0 0 Kπ 0 0 0 −2ξK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A4 = − 2

(Ti + Tad)/2
QstF1,

F1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0
.
.

0

0
.

0
sin πxf

sin 2πxf

.

sin Kπxf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[0 0 . . . 0 cos πxf cos 2πxf . . . cos Kπxf 0 0 . . . 0](NM+2K)×(NM+2K).
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